

利用多源测量数据实时估算整层大气光学湍流

耿丹^{1*},朱文越^{2,3},彭进先¹,罗金鹏¹,青春^{2,3},刘强^{2,3**}

163611部队,新疆库尔勒841000;

²中国科学院合肥物质科学研究院安徽光学精密机械研究所大气光学重点实验室,安徽 合肥 230031; ³先进激光技术安徽省实验室,安徽 合肥 230037

摘要 综合利用微波辐射计、风廓线雷达、自动气象站、温度脉动仪及历史探空资料等多源测量数据可实时估算整层大 气光学湍流。本文通过构建实时大气参数廓线,计算边界层高度,在边界层和自由大气层分别采用指数递减模式和 Dewan外尺度模式估算大气折射率结构常数(*C*²_n)廓线,拼接后积分实现了大气相干长度(*r*₀)的实时估算,并与相干长度 仪实测*r*₀进行了对比。通过误差分析可知,*r*₀的模式估算值与实测值在大气层结不稳定状态均方根误差最小,相关性较 好,在稳定和近中性状态均方根误差较大,相关性较差,尤其在近中性状态均方根误差最大。研究结果表明,利用多源大 气测量数据,采用分层估算的方法实时估算整层大气光学湍流是可行的,具有一定的工程应用价值。

关键词 大气与海洋光学;大气湍流;多源测量数据;大气湍流模式;折射率结构常数;大气相干长度
 中图分类号 P427.1
 文献标志码 A
 DOI: 10.3788/AOS222130

1引言

大气湍流是由大气的随机运动造成的,导致大气 折射率在空间和时间上的随机起伏,这种折射率的随 机起伏会引起光强起伏、光束漂移和光斑扩展^[1]。大 气折射率结构常数(C_n^2)描述了空间一点的大气光学 湍流强度,大气相干长度(r_0)描述了传输路径上大气 光学湍流效应的累积效果。国内外学者通常利用大气 光学湍流模式估算 $r_0^{[2:6]}$,胡月宏等^[7]在大气不稳定状 态和稳定状态分别用Kaimal模式和Dewan外尺度模 式估算了戈壁沙漠地区边界层平均 C_n^2 廓线;毕翠翠 等^[8]分别利用Tatarskii 参数化方案和人工神经网络估 算了 C_n^2 廓线;程知等^[9]利用相干长度仪实时测量的大 气相干长度和等晕角,实现了 C_n^2 廓线的实时反演。

利用气球探空数据估算 C²_n 廓线的方法实时性不强,人工神经网络法需要大量的实测 C²_n 廓线进行训练,利用相干长度和等晕角实时反演 C²_n 廓线的方法由于需要持续跟踪恒星信标,因此受天气影响较大。为了更方便地实时估算整层大气光学湍流,本文综合利用微波辐射计、风廓线雷达、自动气象站、温度脉动仪及历史探空资料等多源测量数据,构建实时大气参数廓线,在边界层和自由大气层分别采用指数递减模式和 Dewan模式估算 C²_n 廓线,拼接后积分获得整层 r₀,最后与相干长度仪实测值进行对比分析。该方法可实

时估算整层大气光学湍流强度,且不受天气条件限制, 具有一定的工程应用价值。

2 利用多源测量数据构建实时大气参 数廓线

2.1 数据来源

观测点位于西北戈壁地区,属暖温带大陆性干旱 气候,干燥少雨,年平均温度为13.1℃,平均风速为 2.5 m/s,平均降水量为55.8 mm,主要集中在夏季,全 年日照时间在2900~3000 h,年最大蒸发量为 2778 mm,主导风向为东北风。

在距离地面2.5m的观测平台上布设有多通道微 波辐射计、风廓线雷达、相干长度仪,距离地面6m处 布设有自动气象站、温度脉动仪,以上几种测量设备均 可全天候、全自动测量,图1为大气测量设备分布示意 图,表1为各测量设备原始数据指标。此外,高空气象 数据采用临近探空站点2006—2012年逐日气球探空 资料。

2.2 实时大气参数廓线构建

由于观测点测量设备探测高度有限,采用实测数 据与大气模式拼接的方法构建实时大气参数廓线。首 先对当地多年气球探空资料进行统计获得逐月平均温 度、气压、风场廓线,实时温度廓线10km以下采用微 波辐射计实测数据,10km以上采用逐步消偏法对当

收稿日期: 2022-12-12; 修回日期: 2023-01-18; 录用日期: 2023-02-24; 网络首发日期: 2023-03-09

基金项目:先进激光安徽省实验室基金(AHL2021QN02)、中国科学院重点实验室创新基金(CXJJ-21S028)

通信作者: *gengdan89311@163.com; **liuq@aiofm.ac.cn

图1 大气测量设备示意图

Fig. 1 Sketch map of atmospheric measurement equipments

地月平均温度廓线进行修正^{110]},具体方法如下。

拼接高度 h₀(10 km) 处微波辐射计实测温度 T_{M0} 与当地月平均温度 T_{A0}的百分偏差为

$$\sigma_0 = \frac{T_{\rm M0} - T_{\rm A0}}{T_{\rm A0}} \,. \tag{1}$$

修正的最大高度为*h*₁(25 km),则在*h*₀~*h*₁的高度 *h*处,对月平均温度廓线修正的百分偏差为

$$\sigma_{\rm h} = \sigma_0 (1 - \frac{h - h_0}{h_1 - h_0})_{\,0} \tag{2}$$

高度 h 处的月平均温度为 T_{Ah},则修正后的温度 T_h为

$$T_{\rm h} = T_{\rm A\,h} (1 + \sigma_{\rm h})_{\circ} \tag{3}$$

实时气压廓线近地面采用自动气象站实测数据, 近地面以上采用逐步消偏法对当地月平均气压廓线进 行修正。实时风场廓线3km以下采用风廓线雷达实 测数据,3km以上采用当地月平均风场。按上述方法 构建了2022年8月3日—5日观测点上空的实时温度、 气压、风场廓线,时间分辨率为2min,垂直分辨率为 100m。

3 整层湍流实时估算方法

3.1 边界层高度计算

边界层是大气的底层部分,其高度一般从几百米 到几千米,存在季节变化与日变化规律,在西北干旱地 区,夏季边界层高度较高,白天大于夜晚。边界层的高 度无法通过仪器直接观测获取,本文利用构建的实时 大气参数廓线,采用位温梯度法计算边界层高度。利 用位温梯度廓线在大气不同发展阶段的垂直分布特 点,依据200m和50m之间的位温差来区分边界层类 型,以位温梯度与阈值之间的判定规则分别计算不稳 定边界层、中性边界层和稳定边界层高度^[11]。

3.2 边界层湍流廓线估算

在内陆地区,大气边界层湍流对整层湍流强度的 贡献可能占主要部分,综合考虑观测点多源测量数据 特点,选择合适的大气湍流模式估算边界层 C_n^2 廓 线^[12-13]。常用的边界层模式中,H-V模式需获得 5~ 20 km实时高空风速,而风廓线雷达探测高度仅 3 km; Dewan模式对风场敏感,但风廓线雷达垂直分辨率较 低(100 m),对于底层湍流廓线的计算点数太少,由于 观测点可实时测量近地面 C_n^2 ,因此本文选择指数递减 模式估算边界层 C_n^2 廓线。

在不稳定状态的边界层大气状态,采用 Kaimal 模式^[14],通过参考高度 h_0 处的 $C_n^2(h_0)$ 和边界层高度 h_i 来 估算高度 h处的 C_n^2 ,表达式为

$$\frac{C_n^2(h)}{C_n^2(h_0)} = \begin{cases}
(h/h_0)^{-4/3}, & h_0 \leqslant h \leqslant 0.5h_i \\
(0.5h_i/h_0), & 0.5h_i \leqslant h \leqslant 0.7h_i \circ \\
2.9(0.5h_i/h_0)^{-4/3}(h/h_i)^3, & 0.7h_i \leqslant h \leqslant h_i
\end{cases}$$
(4)

在稳定和近中性大气状态,指数递减模式表达 式为

	表1	测量设备原始数据参数	
Table 1	Raw data	parameters of measurement	equipments

Parameter	Data source	Measurement height	Vertical resolution	Time resolution			
Temperature profile	Microwave radiometer	2.5 m-10 km	50 m (2.5 m-0.5 km) 100 m (0.5-2 km) 250 m (2-10 km)	<3 min			
	Radiosonde data	10–25 km	50 m	12 h			
Dressure and file	Meteorological sensor	6 m	—	$< 10 \mathrm{~s}$			
Pressure prome	Radiosonde data	50 m-25 km	50 m	12 h			
W file	Wind profile radar	2.5 m-3 km	100 m	<3 min			
wind profile	Radiosonde data	3-25 km	50 m	12 h			
Refractive index structure constant	Micro-thermal meter	6 m	_	<10 s			
Atmospheric coherence length	Atmospheric coherence length monitor	2.5 m	_	<20 s			

第 43 卷 第 18 期/2023 年 9 月/光学学报

(9)

(10)

式中:S为风剪切量,与纬向风u和经向风v的关系为

将构建的实时大气参数廓线代入式(6)~(9),从

而实现自由大气层 C₂ 廓线的实时估算。将边界层和

自由大气层 C₂ 廓线拼接得到整层廓线,代入以下湍流

式中:z为传输路径;L为路径终点;λ为波长,为了与相

利用构建的2022年8月3日-5日实时大气参数

廓线,采用位温梯度法计算的观测点上空边界层高度

如图2所示,稳定、近中性边界层高度约几百米,而不

积分式,从而实现整层大气相干长度r。的实时估算:

 $r_0 = \left| 0.423 \left(\frac{2\pi}{\lambda} \right)^2 \int_0^L C_n^2(z) dz \right|$

干长度仪实测结果一致,本文取λ为550 nm。

估算结果

4.1 整层湍流廓线模式估算结果

4

 $S = \left[\left(\frac{\partial u}{\partial h} \right)^2 + \left(\frac{\partial v}{\partial h} \right) \right]$

$$\frac{C_n^2(h)}{C_n^2(h_0)} = (\frac{h}{h_0})^{-2/3}$$
(5)

相干长度仪的测量平台离地2.5m,而温度脉动仪 离地6m,由于底层湍流较强,2.5~6m之间的湍流是 不可忽略的^[15]。为保证模式估算与相干长度仪实测的 初始条件相同,将温度脉动仪实测的*C*²_n(6)按递减指数 换算到*C*²_n(2.5),从而实现边界层*C*²_n廓线的实时估算。

3.3 自由大气层湍流廓线估算

自由大气层是大气的高层部分,受下垫面的影响 较小。根据Kolmogorov均匀各向同性湍流理论, Tatarskii^[16]把C₂表示为

$$C_n^2 = \alpha L_0^{4/3} M^2,$$
 (6)

$$M = \frac{79 \times 10^{-6} P}{T^2} \left(\frac{\mathrm{d}T}{\mathrm{d}h} + \gamma\right),\tag{7}$$

式中: α 为常数,通常取2.8;M为位势折射率梯度;P为距离地面高h处的气压,hPa;T为h处的温度,K; $\gamma=9.8\times10^{-3}$ K/m,为干空气绝热递减率; L_0 为湍流 外尺度,m。本文采用Dewan外尺度模式:

$$L_{0}^{4/3} = \begin{cases} 0.1^{4/3} \times 10^{1.64 + 42.08} & \text{troposphere} \\ 0.1^{4/3} \times 10^{0.506 + 50.08} & \text{stratophere} \end{cases}$$
(8) 稳定边界层在午后甚至超过 3 km.

$$I_{0}^{4/3} = \begin{cases} 0.1^{4/3} \times 10^{0.506 + 50.08} & \text{stratophere} \\ 0.1^{4/3} \times 10^{0.506 + 50.08} & \text{stratophere} \end{cases}$$
(8) 稳定边界层在午后甚至超过 3 km.

图 2 大气边界层高度(2022年8月3日—5日) Fig. 2 Atmospheric boundary layer height (August 3-5, 2022)

在边界层采用指数递减模式估算 C_n^2 廓线,在自由 大气层采用 Dewan 模式估算 C_n^2 廓线,拼接后得到 2022年8月3日—5日地面~25 km 的整层 C_n^2 廓线。 图 3为2022年8月4日夜间(2:00)、早晨(7:30)、下午 (16:00)三个典型时刻的整层 C_n^2 廓线,可看出模式估 算的 C_n^2 随高度分布在夜间和早晨从 10⁻¹⁵减小到 10⁻¹⁹,白天从 10⁻¹⁴减小到 10⁻¹⁹,中间存在起伏波动,对 流层顶的突变是由于 Dewan 外尺度模式在对流层顶 的不连续造成的。

4.2 r₀模式估算值与实测值对比

将整层 C²_n 廓线代入湍流积分式(10),得到 2022 年8月3日—5日大气相干长度r₀的模式估算值,将r₀ 模式估算值与同期相干长度仪的实测值进行对比,如 图4所示,二者偏差如图5所示。由图可看出r₀模式估 算值与实测值的数量级和变化趋势基本一致,能够反 映出湍流的日变化规律,白天(不稳定状态)估算值与 实测值一致性较好,而在夜间(稳定状态)及转换时段 (近中性状态),估算值与实测值偏差较大,尤其是在转换时段偏差最大。

68

72

图 6 为同期温度脉动仪实测近地面 C_n²,对比图 4~ 图 6 可看出,r₀模式估算值与近地面 C_n²呈现明显相反的波动规律,模式估算值偏差较大的时段多发生在近地面湍流较弱的时段。

4.3 分层估算与整层估算结果对比

本文分两层估算 C_n^2 廓线(简称分层估算),若直接 用 Dewan模式估算整层 C_n^2 廓线(简称整层估算),也可 得到 r_0 模式估算值,该方法更简单,但 C_n^2 廓线中不包 含近地面温度脉动仪的实测数据。图7为2022年8月 4日 r_0 分层模式、整层模式估算值以及相干长度仪实 测值的对比和偏差,由图可看出,分层模式和整层模式 估算的 r_0 均能够反映湍流的日变化特征,而在夜间及 转换时段(稳定及近中性状态)两种模式估算值差异 较大。

用均方根误差(RMSE)和标准差(σ)来评估估算

图 3 不同时刻估算的整层 C_n^2 廓线(2022年8月4日)。(a) 02:00;(b) 07:30;(c) 16:00 Fig. 3 Estimated whole-layer C_n^2 profile at different time (August 4, 2022). (a) 02:00; (b) 07:30; (c) 16:00

图 4 r_0 模式估算值与实测值对比(2022年8月3日—5日) Fig. 4 Contrast of estimated r_0 and measured r_0 (August 3-5, 2022)

图 5 r_0 模式估算值与实测值的偏差 Fig. 5 Deviation between estimated r_0 and measured r_0

图 6 近地面实测 $C_n^2(2022 \mp 8 \beta 3 \beta - 5 \beta)$ Fig. 6 Measured C_n^2 on surface layer (August 3-5, 2022)

研究论文

第 43 卷 第 18 期/2023 年 9 月/光学学报

值的准确性和波动性,在大气稳定和近中性状态,r₀模 式估算值相对于实测值的均方根误差分别为4.6763 (分层模式)和3.9505(整层模式),整层模式略优;r₀模 式估算值的标准差分别为2.3767(分层模式)和

6.8070(整层模式),分层模式估算值波动性明显减小, 表明分层估算是有意义的,在边界层采用包含了近地 面实测 C²_n的指数递减模式,能够反映底层湍流的真实 状况,减小整层r₀估算结果的波动。

图 7 r_0 分层估算值、整层估算值与实测值的对比和偏差(2022年8月4日)。(a)对比;(b)偏差 Fig. 7 Contrast and deviation of estimated r_0 in two layers, estimated r_0 as a whole, and measured r_0 (August 4, 2022). (a) Contrast; (b) deviation

5 误差分析

5.1 误差统计

在大气层结不稳定、稳定和近中性三种状态下,分 别采用 r_0 模式估算值与实测值的均方根误差(RMSE) 和相关系数(R_{xy})来评价模式估算的准确性,误差统计 结果见表2。可看出在大气层结不稳定状态RMSE最 小,相关性较好,在稳定和近中性状态RMSE较大,相 关性较差,尤其在近中性状态RMSE最大。

表 2 r_0 模式估算值与实测值统计分析 Table 2 Statistical analysis between estimated r_0 and measured

	10	
Atmospheric	Exponential decline model r_0 versus measured r_0	
stratification	RMSE	Rxy
Unstable	2.988	0.8346
Near neutral	6.858	-0.5111
Stable	5.088	-0.6236

5.2 误差原因分析

r₀模式估算值与实测值之间存在差异,主要是由 技术路线差异、大气湍流模式普适性以及数据融合处 理过程带来的。

1)模式估算与仪器实测存在技术路线差异

利用 C²_n 廓线积分计算 r₀,体现的是传输路径上各 点湍流效应的累积,而相干长度仪测量 r₀采用的是差 分像运动原理,二者原理不同,可能造成系统性差异。 造成湍流的因子较多,温度脉动仪测量的 C²_n可能只是 其中的一部分,单靠 C²_n并不能完全反映真实的湍流状 态^[17],这也可能会导致 r₀模式估算值与相干长度仪实 测值的差异。

2)大气湍流模式的普适性存疑

由于边界层湍流占整层湍流的比例很大,因此边 界层 C²_n廓线对 r₀估算结果影响很大,相似理论是边界 层湍流模式的基石,而在大气层结稳定或近中性状态, 相似理论有多大程度成立是值得怀疑的^[18],此外 C²_n随 高度递减指数可能是动态变化的,在不同的时间、地 点,递减指数可能不同^[19-21],递减指数的取值对 r₀估算 结果影响很大,因此模式估算值误差会增大。

3)数据融合处理过程存在误差

由于微波辐射计和风廓线雷达垂直分辨率受到限制,因此湍流积分步长受限,对r₀模式估算值也有一定 影响;由于探空数据高度的限制,本文中湍流廓线的积 分高度为25 km,也会导致r₀模式估算值略偏小;此 外,位温梯度法由于判定阈值的选择,计算的边界层高 度有一定偏差,对r₀模式估算值也有一定影响,但不是 主要因素。

6 结 论

本文利用多源大气测量数据实时估算了 C²_n 廓线 并积分得到 r₀, r₀模式估算值与实测值的数量级和变 化趋势基本一致,在大气层结不稳定状态 RMSE 最 小,相关性较好,在稳定和近中性状态 RMSE 较大,相 关性较差,尤其在近中性状态 RMSE 最大。估算值与 实测值的偏差主要是由技术路线差异、大气湍流模式 普适性及数据融合处理过程存在误差造成的。研究结 果表明,利用多源大气测量数据,采用分层估算的方法 实时估算大气光学湍流是可行的。

利用多源大气测量数据估算大气光学湍流,可提高整层湍流估算的实时性,在某些情况下还可作为相

研究论文

干长度仪实测数据的补充与佐证,具有一定的工程应 用价值。该方法的关键是不稳定和近中性边界层湍流 的准确估算,可通过精确测量*C*²,随高度递减指数或其 他湍流模式优化方法,进一步减小模式估算误差。

参考文献

[1] 饶瑞中.光在湍流大气中的传播[M].合肥:安徽科学技术出版 社,2005:263-272.

Rao R Z. Light propagation in the turbulent atmosphere[M]. Hefei: Anhui Science & Technology Publishing House, 2005: 263-272.

[2] 吴晓庆.大气光学湍流、模式与测量技术[J].安徽师范大学学报(自然科学版),2006,29(2):103-107.
 Wu X Q. Atmospheric optical turbulence, model and

measurement techniques[J]. Journal of Anhui Normal University (Natural Science), 2006, 29(2): 103-107.

 [3] 吴晓庆.大气光学湍流廓线估算方法研究进展[J].安徽师范大 学学报(自然科学版), 2021, 44(1): 1-4.
 Wu X Q. Research progress of estimation methods for

atmospheric optical turbulence profile[J]. Journal of Anhui Normal University (Natural Science), 2021, 44(1): 1-4.

 [4] 冯克涛,李晓毅,钱璇,等.基于改进粒子群算法拟合大气光 学湍流廓线模式的研究[J].激光与光电子学进展,2022,59(5): 0501002.

Feng K T, Li X Y, Qian X, et al. Atmospheric optical turbulence profile model fitting based on improved particle swarm algorithm[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0501002.

- [5] 朱黎明,孙刚,陈多龙,等.基于支持向量机估算大气光学湍流廓线的研究[J].光学学报,2022,42(1):0101001.
 Zhu L M, Sun G, Chen D L, et al. Atmospheric optical turbulence profile estimation using support vector machine[J]. Acta Optica Sinica, 2022, 42(1):0101001.
- [6] 仇陈祥,侯再红,靖旭,等.双向大气相干长度测量获取湍流 模式及日变化分析[J].光学学报,2022,42(9):0901002.
 Qiu C X, Hou Z H, Jing X, et al. Turbulence models and daily variations obtained by bidirectional atmospheric coherent length measurements[J]. Acta Optica Sinica, 2022, 42(9):0901002.
- [7] 胡月宏,强希文,封双连,等.戈壁沙漠地区边界层大气湍流 强度高度分布建模[J].光学学报,2013,33(s1):s101005.
 Hu Y H, Qiang X W, Feng S L, et al. Modeling of atmospheric turbulence in boundary layer over desert[J]. Acta Optica Sinica, 2013,33(s1):s101005.
- [8] 毕翠翠,青春,钱仙妹,等.基于反向传播神经网络估算大气 光学湍流廓线[J]. 激光与光电子学进展,2021,58(21): 2101001.
 Bi C C, Qing C, Qian X M, et al. Estimation of atmospheric

optical turbulence profile based on back propagation neural network[J]. Laser & Optoelectronics Progress, 2021, 58(21): 2101001.

- [9] 程知,侯再红,靖旭,等.Hufnagel-Valley湍流强度廓线的高 精度实时反演方法[J]. 红外与激光工程,2013,42(6):1562-1567.
 Cheng Z, Hou Z H, Jing X, et al. High-precision and real-time inversion method of Hufnagel-Valley turbulence profile[J].
 Infrared and Laser Engineering, 2013, 42(6): 1562-1567.
- [10] 秦琦冰,魏合理.基于平均探空廓线和地表实测数据构建大气

第 43 卷 第 18 期/2023 年 9 月/光学学报

参数廓线的方法研究[J]. 大气与环境光学学报, 2013, 8(3): 161-168.

Qin Q B, Wei H L. Construction of real-time atmospheric parameter profiles based on average radiosonde profiles and surface meteological datas[J]. Journal of Atmospheric and Environmental Optics, 2013, 8(3): 161-168.

- [11] 顾杰.基于多数据集的大气边界层高度比较研究[D].南京:南京信息工程大学,2020.
 Gu J. An analysis of planetary boundary layer height based on multiple datasets[D]. Nanjing: Nanjing University of Information Science & Technology, 2020.
- [12] 徐自强,吴晓庆,许满满,等.海洋上空折射率结构常数廓线 估算[J].物理学报,2021,70(24):244204.
 Xu Z Q, Wu X Q, Xu M M, et al. Estimation of C_n² profile of troposphere over the sea[J]. Acta Physica Sinica, 2021, 70(24): 244204.
- [13] 朱黎明,孙刚,张汉九,等.利用激光风廓线雷达对海洋大气 边界层高分辨率光学湍流估算模型的研究[J].光学学报, 2022,42(12):1201004.
 Zhu L M, Sun G, Zhang H J, et al. Study on high resolution

optical turbulence estimation model of marine atmospheric boundary layer using lidar[J]. Acta Optica Sinica, 2022, 42(12): 1201004.

- [14] Kaimal J C, Wyngaard J C, Haugen D A, et al. Turbulence structure in the convective boundary layer[J]. Journal of the Atmospheric Sciences, 1976, 33(11): 2152-2169.
- [15] 翁宁泉,吴毅,汪建业,等.利用湍流廓线获得斜程大气相干 长度的实验研究[J].强激光与粒子束,2004,16(3):273-276.
 Weng N Q, Wu Y, Wang J Y, et al. Experimental study of obtaining atmospheric coherent length from turbulence profile[J].
 High Power Laser & Particle Beams, 2004, 16(3): 273-276.
- [16] 塔塔尔斯基.湍流大气中波的传播理论[M].温景嵩,译.北京: 科学出版社,1978:63-68.
 Tatarskii B H. Wave propagation in a turbulent medium[M].
 Wen JS, Transl. Beijing: Science Press, 1978:63-68.
- [17] 饶瑞中.现代大气光学及其在光电工程应用中的问题分析与展望(特邀)[J].红外与激光工程,2022,51(1):20210818.
 Rao R Z. Analysis and prospect of modern atmospheric optics and its applications in optoelectronic engineering (Invited) [J]. Infrared and Laser Engineering, 2022, 51(1): 20210818.
- [18] 蔡俊.海洋环境下的大气光学湍流测量与模式研究[D]. 合肥: 中国科学技术大学, 2018.
 Cai J. Research on measurement and model of atmospheric optical turbulence in marine environment[D]. Hefei: University of Science and Technology of China, 2018.
- [19] 吴晓庆,孙刚,翁宁泉,等.典型地区大气光学湍流测量与模式研究[J].大气与环境光学学报,2007,2(6):409-422.
 Wu X Q, Sun G, Weng N Q, et al. Measurement and modeling of C_n² at typical regions in China[J]. Journal of Atmospheric and Environmental Optics, 2007, 2(6): 409-422.
- [20] Ryzner E, Bartlo J A. Dependence of C²_n in the atmospheric boundary layer on conventional meteorological parameters[R]. Air Force Geophysics Laboratory, AFGL-TR-86-0013, 1986.
- [21] 陈小威.光电系统选址中的关键大气光学参数测量与分析[D]. 合肥:中国科学技术大学,2018.
 Chen X W. Measurement and analysis of key atmospheric optical parameters of site testing for optoelectronic system[D]. Hefei: University of Science and Technology of China, 2018.

Real-Time Estimation of Whole-Layer Atmospheric Optical Turbulence with Multi-Source Measurement Data

Geng Dan^{1*}, Zhu Wenyue^{2,3}, Peng Jinxian¹, Luo Jinpeng¹, Qing Chun^{2,3}, Liu Qiang^{2,3**} ¹Unit 63611 of PLA, Korla 841000, Xinjiang, China;

²Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China;
³Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, Anhui, China

Abstract

Objective Atmospheric turbulence causes laser intensity fluctuation, beam drift, and beam spreading, which necessitates the determination of its intensity. Refractive index structure constant (C_n^2) profile and atmospheric coherence length (r_0) are usually used to describe the atmospheric turbulence in the whole layer. The C_n^2 profile in the whole layer is difficult to measure in real time economically in some cases, and researchers estimate atmospheric turbulence in different ways. C_n^2 profile can be estimated using conventional meteorological parameters or artificial neural networks. Nevertheless, such methods either perform poorly in real time or require a considerable amount of measured data. An atmospheric coherence length monitor is usually employed to measure atmospheric coherence length and the isoplanatic angle, which can be further used for the real-time inversion of C_n^2 profile. However, this instrument is easily affected by bad weather because it needs to track stars continuously. The study proposes a method to estimate the whole-layer atmospheric optical turbulence with multi-source measurement data from the microwave radiometer, wind profiler radar, meteorological sensor, micro-thermometer, and radiosonde. Being real-time and weather-proof, the proposed method is effective in engineering applications.

Methods Specifically, a real-time atmospheric parameter profile is constructed with multi-source measurement data from the microwave radiometer, wind profiler radar, meteorological sensor, and radiosonde. Real-time ground-based data and radiosonde data are spliced together in accordance with the coefficients of correction at different heights. Then, this study distinguishes the atmospheric stratification state and calculates boundary layer height according to the distribution characteristics of the potential temperature gradient with the data from the microwave radiometer. After that, the C_n^2 profile in the boundary layer is estimated by applying the exponential decline model, using real-time data from the micro-thermometer. The exponential decline index is -3/4 during the daytime and -2/3 at night. The C_n^2 profile in the free atmosphere is estimated by employing the Dewan outer-scale model, using the previously constructed real-time atmospheric parameter profile. Furthermore, the C_n^2 profiles in the two layers are spliced together to estimate r_0 according to the integral relationship between the two layers. Finally, the estimated r_0 is compared with the value measured by the atmospheric coherence length monitor.

Results and Discussions The calculated boundary layer height varies from hundreds of meters at night to more than three thousand meters in the afternoon, and it is based on the previously constructed real-time atmospheric parameter profile data from August 3 to August 5 (Fig. 2). The estimated C_n^2 profiles in the boundary layer and free atmosphere are spliced together, and the results show that C_n^2 decreases with fluctuations, as altitude increases from ground level to 25 km. The order of magnitude of the estimated C_a^2 decreases from 10^{-15} to 10^{-19} at night and in the morning and from 10^{-14} to 10^{-19} during the daytime (Fig. 3). The estimated r_0 has the same order of magnitude and daily variation trend as those of the measured values. The consistency between them is fair in unstable atmospheric stratification but poor in the case of stable and near-neutral atmospheric stratifications (Fig. 4). The deviation is maximum in near-neutral atmospheric stratification, when the atmospheric turbulence near the ground is weak (Fig. 5). The root-mean-square error (RMSE) between the estimated r_0 and the measured r_0 is 2.988 in unstable atmosphere stratification, 6.858 in near-neutral atmospheric stratification, and 5.088 in stable atmosphere stratification. The correlation in unstable atmospheric stratification is much better than that in stable or near-neutral atmospheric stratifications (Table 2). In addition, the estimated r_0 in the two component layers is compared with that in the whole layer obtained by applying the Dewan model. The RMSE between the estimated r_0 and the measured r_0 shows that the estimated r_0 in the whole layer is slightly more consistent than that in the two component layers. Nevertheless, the standard deviation shows that the estimated r_0 in the two component layers is much less fluctuant than that in the whole layer (Fig. 7). The deviation of the estimated r_0 from the measured r_0 is caused by several reasons. First, the atmospheric turbulence model has a technical route different from that of instrument measurement. Second, the applicability of the atmospheric turbulence model is doubtful in the sense that the similarity theory of turbulence is probably false in stable or near-neutral atmospheric stratification. Last but not least, data fusion and processing may also cause estimation errors.

Conclusions Multi-source atmospheric measurement data are used to estimate C_n^2 profile and r_0 in real time. The results show that the estimated r_0 has the same order of magnitude and daily variation trend as those of the measured r_0 . Moreover, the RMSE is minimum in unstable atmospheric stratification and maximum in stable atmospheric stratification, and the correlation in unstable atmospheric stratification is better than that in stable or near-neutral atmospheric stratification. Analysis proves that the whole-layer atmospheric optical turbulence can be estimated in real time by estimating the C_n^2 profile in the two component layers with multi-source measurement data. The proposed method provides better real-time performance in estimating the whole-layer atmospheric optical turbulence and can validate instrument measurement in some cases. Therefore, it has great engineering application significance. Since the key to this method is to estimate the C_n^2 profile in the boundary layer accurately, modifying the atmospheric turbulence model for the boundary layer is important for improving estimation accuracy.

Key words atmospheric and ocean optics; atmospheric turbulence; multi-source measurement data; atmospheric turbulence model; refractive index structure constant; atmospheric coherence length